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A tractable theory for weakly damped, nonlinear Stokes waves on deep water was 
recently formulated by Ruvinsky & Friedman (1985a, b ;  1987). I n  this paper we 
show how the theory can be simplified, and that it is equivalent to a boundary-layer 
model for surface waves proposed by Longuet-Higgins (1969), when the latter is 
generalized to include surface tension and nonlinearity. The potential part of the flow 
is determined by boundary conditions applied at the base of the vortical boundary 
layer. The theory may be of use in discussing the generation of waves by wind. 

1. Introduction 
Since Stokes's original paper (1847) the irrotational theory of surface waves on water 
of infinite or uniform finite depth has been outstandingly successful in predicting 
many observed wave phenomena. For certain applications, however, viscous 
damping of the waves is important, and it would be highly convenient to have 
equations and boundary conditions of comparable simplicity as for undamped 
waves. A first step in this direction was made by Lamb (1932) who showed that for 
most wavelengths of interest the effects of viscosity on linear, deep-water waves are 
confined to a thin vortex layer near the free surface, of thickness Do = (2v/g)i (where 
v denotes the kinematic viscosity and the radian frequency). When kD, < 1 (lc the 
wavenumber) we may say that the waves are weakly damped. Lamb (1932) 
calculated the tangential stress at the surface that would be required in a perfectly 
periodic state ; hence the energy loss and consequent wave damping in the absence 
of such applied stresses. 

Longuet-Higgins (1960) considered the action of a general, tangential stress a t  the 
free surface, varying sinusoidally in the horizontal direction.? He showed that the 
stress would tend to produce a vortical boundary layer that  was thicker a t  points 90" 
out of phase with the stress. For example, a stress greatest a t  the wave crest would 
produce a thickening of the layer on the rear wave slopes, tending to pump energy 
into the potential flow in the interior. Similarly, in the absence of any wind the 
viscous stresses at the base of the vortical layer would tend to thicken the layer on 
the forward slopes of the wave and to  produce the calculated wave damping (see 
figure 1 . )  

In  several papers Ruvinsky & Freidman (1985a, b ;  1987) have independently 
formulated a system of equations for weakly damped surfaces waves in deep water, 

t At  second order in the wave steepness i t  is known that vorticity may diffuse into the interior 
of the fluid (see Longuet-Higgins 1953, 1960). Here we confine attention mainly to the linear 
theory, or a t  least to times after the start of the motion that are short enough for the diffusion or 
convection of vorticity to be still negligible. 
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FIGURE 1. Sketch of the vortical boundary-layer induced by viscous stresses in a deep-water wave. 

and have successfully applied it to the calculation of capillary-gravity ripples riding 
on the forward face of steep gravity waves. They formally separated the velocity field 
into its irrotational and vortical components and hence were led to the coupled 
system : (3.1) to (3.5) below. This they then solved for periodic waves by numerical 
integration. Their analysis is summarized in the Appendix to a recent paper 
(Ruvinsky, Feldstein & Freidman, 1991). As a final remark they state that it is 
possible to use a certain ‘simpler set of equations’, but they give no derivation or 
physical explanation. They justify the simpler system solely on the grounds that i t  
yields the correct expression for the decay of weakly damped surface waves. 

The purpose of the present note is, first, to give an analytical derivation of this 
simpler set of equations and, secondly, to provide a physical explanation for them. 
Indeed we show that the simpler equations express precisely the physical argument 
given by Longuet-Higgins (1969). 

In  a further discussion (54 below) we point out that the simplified system of 
equations may be generalized so as to include applied surfaces stresses. Thus it may 
be of use in the theory of wave generation by wind. 

2. Dynamics of the vortical layer 
In  this section we summarize the physical argument given by Longuet-Higgins 

(1969) for gravity waves and extend it to include capillarity. 
Consider a surface wave travelling to  the right with speed c as in figure 1.  Let n and 

s denote coordinates normal and tangential to the free surface, and v’, u’ the vortical 
components of the orbital velocities v, u in the corresponding directions. If D denotes 
the thickness of the vortical layer and M = spu’dn, the integrated mass flux across 
the layer, we have by continuity 

where 7 is the tangential stress acting on the layer. If 7 is proportional to  
expi (ks- u t )  where k is the wavenumber, then integration of (2.1) with respect to the 
time t gives 

i7 
D = puc -+constant. 

Thus D leads 7 by 90”. Now in the case when the tangential stress at the surface 
vanishes, the only other tangential force acting on the boundary layer is the viscous 
force at the base of the boundary layer, which is given by 
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is the surface elevation. From (2.2) and where p is the coefficient of viscosity and 
(2.3) we see that the tangential stress produces an additional surface elevation 

2ipk 

P" 
7' = - -q ,  

This produces an added normal stress 

where g and T denote gravity and surface tension. But from the dispersion relation 

u 2 = g k + ( T / p ) k 3  (2.6)  

for capillary-gravity waves, equation (2.5) can be written 

(2.7) 
P a  
k 

S+ = - q' = - 2ipak7. 

In addition we must take into account the viscous component of the normal stress 
p,, a t  the surface, which may be written 

av 
2p- = 2pkv = -2ipakp. 

an 

Adding this to (2.5) wc find that it doubles the total pressure, giving altogether 

Sp = -4ipukq. (2.9) 

Clearly Sp is greatest on the forward face of the wave where the orbital velocity is 
upwards. Hence Sp does work against the orbital motion and so damps the waves. 
In  fact (2 .9 )  leads to the classical law for viscous decay of waves of amplitude a, 
namely 

a cc exp (-2vk't) .  (2.10) 

3. The theory of Ruvinsky & Freidman 
We shall now reconcile the analysis of Ruvinsky & Freidman (1985a,  b ;  1987) with 

the above physical argument. These authors formally separate the potential and 
vortical components of the flow by writing 

u = v$+U', U'= v A @ (3.1) 

where 9 is a vector stream function. They apply to u' a boundary-layer 
approximation similar to that used in Longuct-Higgins (19.53, 1960) and arrive at the 
following system of coupled equations : 

VZ$ = 0, (3.2) 

(3.3) 

(3.5) 
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In equation (3.3) ~ ( 7 )  denotes the curvature operator : a2q/a:c2 / (  1 + al;l/as2);. 

kinematic condition (3.4). To remove this we may write 
In  the above equations the outstanding coupling term is v‘ on the right of the 

7 = v*+q’, 7 ‘ =  v’dt (3.7) s 
and evaluate the boundary conditions on the new surface ?,I = q*. For simplicity we 
consider first only the linear terms. Treating 7’ as of the same order or smaller than q ,  
we see that (3.4) becomes simply 

without the additional term on the right-hand side. Similarly (3.3) becomes 

to be satisfied on z = y*. But by (3.6) 

(3.9) 

(3.10) 

to within a constant. Now operating on both sides of (3.10) by ( g - T / p  a 2 / a x 2 )  and 
using the dispersion relation (2.6) we see 

So by virtue of Laplace’s equation (3.2), equation (3.9) becomes simply 

(3.11) 

(3.12) 

on z = ?,I*. Lastly we note that the term -4va2+/az2 represents precisely the 
additional pressure term given by (2.9). For since iu = -a/at and k = a/& we have, 
apart from the constant term, 

(3.13) 

We see then that the last term in equation (3.12) represents an additional pressure, 
half of which comes from the viscous component in the normal stress pnn. The other 
half comes from the thickening of the vortical boundary layer due to the piling up 
of mass induced by the tangential stress a t  the base of the boundary layer. 

It is important to recognize that the boundary conditions (3.8) and (3.12) for the 
potential q5 are to be evaluated not at the free surface z = ?,I but a t  the modified free 
surface z = q*. After the solution for 4 is determined, together with q*, the free 
surface z = q may be recovered by means of (3.7). 
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4. Discussion 
In  $3 we simplified the analysis by linearizing the two boundary conditions (3.3) 

and (3.4). Some linearization is already inherent in any case in the last two terms on 
the right of these equations. It is not difficult to show that if we retain nonlinear 
terms on thc surface slope c, but not in the ratio ICD, of the boundary-layer thickness 
to the wavelength, then (3.8) and (3.12) above are generalized to 

and 

a4 1 T a24 - + - (V$)2 + gy * - ; K ( 7 )  + 4v - = 0 
at 2 an2 

(4.2) 

on z = y*, a t  least to  order c2. A t  order c2, we find a contribution to the mass 
transport and its normal gradient just beneath the vortical boundary layer, which, 
to this order, may simply be added to the solutions of (4.1) and (4.2). The centrifugal 
forces associated with the mass transport velocity must however be incorporated 
into (4.2) at order e3. 

However, the second-order vorticity generated by parasitic capillary waves and 
released from beneath the boundary layers (Longuet-Higgins 1955, 1960) is much 
greater than that from the original gravity wave. This vorticity may accumulate 
very rapidly (in one gravity-wave period) near the crest of the gravity wave and 
produce a crest vortex. This in turn may significantly affect the dynamics of the 
parasitic capillaries (see Longuet-Higgins 1991). 

We notc that all of the above analysis applies to non-breaking and non-turbulent 
motions in which the kinematic viscosity v represents the molecular viscosity. It is 
highly interesting to consider whether an analogous theory might be formulated for 
breaking waves, in which v would be replaced by a turbulent eddy coefficient. A full 
discussion of this question is beyond the scope of the present note, except to  remark 
that generally i t  will be necessary to  include an exchange of mass between the 
vortical and non-vortical parts of the flow across the lower boundary of the vortical 
layer. For plunging breakers, a flux of mass and momentum across the upper 
boundary will also be required. A further requirement is that the vorticity in the 
surface layer should decay in a time interval of the order of a wave period a t  most. 
A residual mean vorticity may however be added in the form of a surface shear 
current . 
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